A Multi-Analyzer Machine Learning Model for Marine Heterogeneous Data Schema
نویسندگان
چکیده
In heterogeneous data integration, an effective machine learning model plays an important role in schema mapping. Schema mapping machine learning model and its probability learning improvement are analyzed in this paper firstly, and then the concept of multi -analyzer model with the method of fuzzy comprehensive evaluation is put forward to improve machine learning results’ efficiency and accuracy. Comprehensive experiments on multi-analyzer model confirm the effectiveness of multi -analyzer model.
منابع مشابه
A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping
The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملVacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery
Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...
متن کاملEvaluating approaches for supervised semantic labeling
Relational data sources are still one of the most popular ways to store enterprise or Web data, however, the issue with relational schema is the lack of a well-defined semantic description. A common ontology provides a way to represent the meaning of a relational schema and can facilitate the integration of heterogeneous data sources within a domain. Semantic labeling is achieved by mapping att...
متن کامل